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Equations with Singular Diffusivity
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Recently models of faceted crystal growth and of grain boundaries were
proposed based on the gradient system with nondifferentiable energy. In this
article, we study their most basic forms given by the equations ut=(ux�|ux | )x

and ut=(1�a)(aux �|ux | )x , where both of the related energies include a |ux |
term of power one which is nondifferentiable at ux=0. The first equation is
spatially homogeneous, while the second one is spatially inhomogeneous when
a depends on x. These equations naturally express nonlocal interactions through
their singular diffusivities (infinitely large diffusion constant), which make the
profiles of the solutions completely flat. The mathematical basis for justifying
and analyzing these equations is explained, and theoretical and numerical
approaches show how the solutions of the equations evolve.

KEY WORDS: Singular diffusivity; faceted growth; grain boundary; extended
gradient system.

1. INTRODUCTION

First of all, we would like to state that it is a great honor for us to con-
tribute our article to the special issue of John Cahn's 70th Birthday. As is
well-known, he has done a lot of excellent work over a wide range of
scientific topics��mathematics, physics and material science, and he is still
actively working in these areas. In addition, he has worked as a bridge con-
necting these fields, and we think of this as his greatest contribution to the
scientific community. Recently the authors have presented mathematical
models of faceted growth of crystals(1) and of the grain boundary, (9) both
of which are derived from nondifferentiable energies. These models express
non-local interaction in a natural manner using singular diffusivities. We
consider that these topics are suitable for the paper dedicated to Dr. Cahn
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because they are related to mathematics, physics and material science.
Actually, the general mathematical theory provides relevant information
for the models, and vice-versa the models motivate the theory. We expect
that our work can be one example which enhances the interaction between
these areas. However, we were faced with one difficulty. The mathematical
basis of our model is unfortunately not well-known to non-mathematicians
(at least at this point). In addition, it is usually expressed in a completely
mathematical manner, while we recognize that this special issue is not
addressed only to mathematicians. Generally speaking, mathematicians
always want to be rigorous and as a result tend to write a paper which is
hard to understand for those who are not familiar with their jargon. On the
other hand the contents themselves often permit an intuitive understanding
and are practically useful, and so are ours. Therefore we decided to design
our article in a somewhat irregular form. We will explain the mathematical
basis of our model in the former part of our article, then state our original
results in the latter. Throughout this article, we will try to make the con-
tents as understandable as possible to non-mathematicians. It is not
desirable to have barriers between the fields of science, thus our effort to
break them is meaningful and fits well with the thought of Dr. Cahn, we
believe. Accordingly we do not pursue mathematical rigor, and we refer the
readers who are interested in rigorous results to our companion paper.(2)

In this article, we consider the spatially homogeneous energy
E=� |ux | dx, and also the inhomogeneous one given by the form
E=� a(x) |ux | dx. Gradient systems are formally derived from these
energies like ut=(ux �|ux | )x and ut=(1�a)(aux�|ux | )x . The former is closely
related to the model of faceted growth and the latter to the one of grain
boundary. Although the meaning of the energies are clear, these evolution
equations look ambiguous since they include the indeterminate form
ux �|ux |. If ux never vanishes or vanishes only at the exceptional points,
it might be no problem to consider these equations. However, as it will be
shown in the following sections, the situation is quite the opposite. In fact,
the region where ux vanishes will increase and finally cover the whole
region in the homogeneous case, while in the inhomogeneous case, we are
particularly interested in the solutions whose spatial derivative vanishes
almost everywhere. Therefore we have to make clear the meaning of the
equations and how the solutions behave, especially in the region where ux

vanishes. Fortunately there is a mathematical theory which applies to such
situations. We will only state how the theory gives us useful information,
especially how it determines the value of the indeterminate form ux�|ux |
when ux vanishes. We don't give a rigorous definition of solutions. Instead,
we give several examples of solutions which are usually not explicitly
written in the mathematical literature.
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In Section 2, we will explain the minimum number of basic concepts
which are necessary and then we will go ahead utilizing simple examples.
In addition, useful general theory will be presented in a brief manner.
In Section 3, the spatially homogeneous equation and the theoretical
approach to it will be introduced. Up to here we give the explanation of
what is well-known or already published, and the rest of this article is
devoted to our original results. In the latter half of this section we will
demonstrate the numerics of the homogeneous equation. In Section 4, the
spatially inhomogeneous equation will be discussed. As previously stated,
this equation is related to the grain boundary model introduced in ref. 9.
This model includes two variables, one of which is an order parameter of
orientation and the other is an angle variable. Although they are, of course,
coupled in the model, we will concentrate on the uncoupled form here��i.e.,
the equation of angle variable assuming another variable is given and fixed.
The angle equation itself is mathematically new and worthy of analysis. We
found a sufficient condition on a(x) that the piecewise constant structure of
solutions are preserved. This is one of the new observations of this paper.
Also numerical simulations will be demonstrated.

2. EXTENDED GRADIENT SYSTEMS

In this section, we explain the concept of subdifferentials and extended
gradient systems. Usually the stories related to them are stated in highly
mathematical context, and therefore hard to understand for non-mathe-
maticians. However the concept itself is simple and has an easy geometrical
interpretation. We begin with simple examples.

2.1. Examples

Let us consider the convex function E(u) defined on the real line.
A subdifferential of E at u is defined as the set of a real number a which
satisfies

E(u+h)&E(u)�ah for arbitrary real number h (2.1)

This set is expressed by �E(u).

Example 1. One simplest example of convex function is

E(u)= 1
2u2 (2.2)

What is a subdifferential for this example? The inequality (2.1) means that
the line which go through the point (u, E(u)) with the slope a is lying
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below the graph of E(u). In this example, it is clear that (2.1) holds only
when a=E$(u) as shown in Fig. 2.1. Therefore

�E(u)=[E$(u)]=[u] (2.3)

Generally, subdifferential consists of only one element which is a differen-
tial coefficient for the differentiable convex function.

Example 2. One typical example which keeps convexity and breaks
differentiability is

E(u)=|u| (2.4)

It is obvious that �E(u)=[E$(u)] for non-zero u. Then what is �E(0)?
Considering the geometrical meaning given above, a in (2.1) can be an
arbitrary value in the interval [&1, +1] as shown in Fig. 2.2. Then we
obtain the subdifferential

[&1] u<0

�E(u)={[&1, +1] u=0 (2.5)

[+1] u>0

Fig. 2.1. E(u)= 1
2 u2.
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Fig. 2.2. E(u)=|u|.

By these examples, it was made clear that the subdifferential is an
extended concept of the differential coefficient, which is defined for the
convex function. Next, let us consider the extended gradient system for the
convex energy E(u), which is given by the following form;

du
dt

# &�E(u) (2.6)

You might feel strange to see that the relation in (2.6) is not ``='' but ``#.''
This is because the subdifferential is not a number but a set of numbers.
Also it surely gives an ambiguous impression to the readers since it does
not specify the element that is selected as a value of du�dt from the set
&�E(u) when �E(u) has more than one element. Later we will show how
this ambiguity is removed by the general theory.

Let us consider the extended gradient system (2.6) using the previous
examples.

Example 1. For E(u)= 1
2u2, (2.6) simply means

du
dt

=&u (2.7)

since �E(u)=[E$(u)]=[u]. If the initial data is given by u(0)=u0 , the
solution is u(t)=u0e&t. In this case, there is nothing special and (2.6) gives
a usual differential equation. Generally the extended gradient system (2.6)
coincides with the usual gradient system du�dt=&E$(u) for differentiable
E(u), because �E(u) consists of the single element E$(u).
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Example 2. For E(u)=|u|, the meaning of (2.6) is clear for u(t){0
as follows,

du
dt

={&1
+1

for u(t)>0
for u(t)<0

(2.8)

But, when u(t) vanishes, we know only that &1�du�dt�+1 holds and
don't know how its value is determined.

Here, let us consider the solution with the initial condition u(0)=
u0>0. It is easy to solve it until the time t=u0 as shown in Fig. 2.3(a).
Then consider what value du�dt should take when u(t) vanishes in order to
guarantee that (2.6) can be solved globally (extensible to t>u0). If we take
a positive value, the solution try to reflect at u=0, but as soon as it
becomes positive it must decrease. If a negative value is selected, the solu-
tion go through the point u=0, but as soon as it becomes negative it must
increase. Neither of these selections results in a good behavior. The only
natural answer seems to take du�dt=0 when u(t) vanishes. Once we deter-
mine the rule that du�dt=0 for u(t)=0, (2.6) always has the global solu-
tion for arbitrary initial data u0 , which is given by

u(t)={u0&sgn(u0) t
0

for 0�t�|u0 |
for t�|u0 |

(2.9)

where

+1 for u0>0

sgn(u0)={0 for u0=0 (2.10)

&1 for u0<0

The global flow in the t&u plane is indicated in Fig. 2.3(b).

Fig. 2.3. (a) Solution starting from the initial data u0 . (b) Global flow in t&u plane.
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Example 2 suggests that there might be some rule for selecting one
particular element from the set �E(u(t)) which assures the global existence
of the solution of (2.6). At this point we only refer that the general theory
will give an answer to this selection problem. Note that all the solution of
Example 2 reach the final state (u=0 in this case) within finite time then
stop, while the solution of Example 1 takes infinitely long time to vanish.

Next, we extend the concepts defined for the convex functions to
convex functionals. Hereafter we consider the functions defined on the
interval I=[0, 1], and define the inner product (u, v) by

(u, v) =|
1

0
u(x) v(x) dx (2.11)

The Dirichlet condition u(0)=u(1)=0 will be imposed on the functions
unless we particularly refer to the boundary condition. The arguments
analogous for the Neumann case. The energy functional E(u) is called
convex if

E((1&t) u+tv)�(1&t) E(u)+tE(v) (2.12)

holds for arbitrary functions u and v and arbitrary real number t satisfying
0�t�1. The subdifferential of E at u is the set of all functions f which
satisfies

E(u+h)&E(u)�( f, h) for arbitrary function h (2.13)

This set is expressed by �E(u).
We further consider functions u(x, t) with the two independent

variables��the space variable x and the time variable t. For each fixed
value of t, u(x, t) can be seen as a function of x. Thus we can define the
subdifferential �E(u) by considering u as a function of x for fixed t. By
defining �E(u) in such a way, we define the extended gradient system by

ut # &�E(u) (2.14)

(In this article, the subscripts t and x indicate partial differentiation with
respect to the variable t and x, respectively.)

Example 3. At first, we consider the energy

E(u)=|
1

0

1
2 |ux | 2 dx (2.15)
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It is clear that this energy is convex; also it is well-known that the func-
tional derivative is given by

$E
$u

=&uxx (2.16)

thus the gradient system becomes a basic diffusion equation

ut=uxx (2.17)

In this example, the subdifferential of E is given by

�E(u)={$E
$u==[&uxx] (2.18)

which means the subdifferential consists of only one element��a functional
derivative. This situation corresponds to Example 1. Generally, �E(u)=
[$E�$u] holds when $E�$u exists.

Example 4. Let us consider the convex energy

E(u)=|
1

0
|ux | dx (2.19)

This example together with its extended gradient system are one of the
main concern of our article, thus we devote the entire Section 3 to this
example.

Example 5. We can extend Example 4 to a spatially inhomogeneous
form such as

E(u)=|
1

0
a(x) |ux | dx (2.20)

where a(x) is a given positive function. We devote Section 4 to this example.

2.2. General Theory

Before going to the main subjects, we introduce some useful results
obtained by the general mathematical theory called nonlinear semi-group
theory or variational inequality theory. It is not our intention here to
develope the whole theory properly. We will only state how the general
theory relates to our equations. The difficulty is that we don't know how
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to handle the ambiguity caused by the fact that the right-hand side of (2.6)
or (2.14) is a set. However they are cleared away by the following theorem.
Before stating the theorem, we define canonical restriction which is a key
concept of the theory.

Canonical Restriction. Let us take the nearest element to the
origin within the subdifferential �E(u). The word ``nearest'' means smallest
in absolute value for the case where �E(u) is a subset of the real line. When
�E(u) consists of of functions, the ``nearest'' element to the origin is a func-
tion f 0 which minimizes ( f, f ) within �E(u). In both cases, such a nearest
element always exists and is unique, which is guaranteed by the mathemati-
cal theory (resulted from the fact that �E(u) is a closed convex set). We call
this element f 0 a canonical restriction of the subdifferential �E(u). The
following theorem is essential.

Selection Theorem. If we always select the canonical restriction
f 0 from �E(u(t)) and set

du
dt

=&f 0 or ut=&f 0 (2.21)

the solution u(t) of the extended gradient system (2.6) or (2.14) exists and
is uniquely determined by the initial data. There is no other selection which
guarantees the global existence of the solution of the extended gradient
system. At the point where the differentiability with respect to t is broken,
du�dt or ut stands for the right derivative3 of u.

It is easily seen that this theorem gives a justification to the intuitive
argument for the solution of Example 2. Actually the canonical restriction
of �E(0) is obviously 0 since the interval [&1, +1] includes the origin.
And the derivative always vanishes after the moment when the solution
reaches 0. At t=u0 , u is not differentiable, and the right derivative there is
actually 0. We present one more simple example which is similar to but a
little more complicated than Example 2.

Example 6. We take the energy form

E(u)=max( |u|, 2 |u|&1) (2.22)

1195Equations with Singular Diffusivity
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whose profile is shown in Fig. 2.4(a). It is easy to obtain subdifferentials;

[&2] u<&1
[&2, &1] u=&1
[&1] &1<u<0

�E(u)={[&1, +1] u=0 (2.23)
[+1] 0<u<+1
[+1, +2] u=+1
[+2] u>+1

Also we know what values have to be selected from the subdifferentials at
the nondifferentiable points u=\1 and u=0, when we consider the
extended gradient system du�dt # &�E(u). The canonical restrictions of
�E(&1), �E(0) and �E(+1) are &1, 0 and +1, respectively. The global
flow is shown in Fig. 2.4(b), in which we can observe d+u�dt=�1 for
u=\1 and du�dt=0 for u=0 (or d+u�dt=0 at the time when u just
becomes 0).

Although Examples 2 and 6 seem to be trivial, non-trivial facts will be
obtained for Examples 4 and 5 when the theorems are applied to them.

What the selection theorem means is that the canonical restriction
actually controls the evolution of the solution. This implies that we can
know how the solution will evolve if the canonical restriction can be
obtained in some way, which is usually attained by solving a minimization
problem. Also it is naturally shown that the energy of the solution of the
extended gradient system is non-increasing.

Fig. 2.4. (a) E(u)=max( |u| , 2 |u|&1). (b) Global flow in t&u plane.
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3. SPATIALLY HOMOGENEOUS EQUATION

3.1. Theoretical Approach

In this section we introduce a one dimensional spatially homogeneous
equation. We consider the convex energy form given by

E(u)=|
1

0
|ux | dx (3.1)

already mentioned in the previous section. First, let us calculate the func-
tional derivative $E�$u as follows. By ignoring higher order terms in the
small perturbation $u, we obtain

|(u+$u)x |2& |ux |2+2ux $ux=|ux |2 \1+
2ux $ux

|ux |2 +
thus

|(u+$u)x | & |ux | \1+
ux $ux

|ux | 2 +=|ux |+
ux

|ux |
$ux

By this formal calculation, we obtain the formal functional derivative

$E
$u

=&\ ux

|ux |+x
(3.2)

and the formal gradient system

ut=\ ux

|ux |+x
(3.3)

But the meaning of the right hand side of (3.2) and (3.3) is not clear in the
region where ux vanishes. Actually the calculation process above doesn't
work there.

Our aim here is to demonstrate that such formal expressions make
sense under the concept of subdifferential and extended gradient system.
In addition, the general theory not only justifies the equation but also gives
us a concrete way of calculating ux �|ux | in the region where ux vanishes.
Now we regard the formal equation (3.3) as the extended gradient system
ut # &�E(u). For convenience, we define the three regions D& , D0 and D+

by D&=[ux<0], D0=[ux=0] and D+=[ux>0], respectively. Let us
define ! by !=ux �|ux | . Then it is clear that !=&1 in D& and !=+1
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Fig. 3.1. The interval [0, 1] is divided into three intervals D+=[0, :), D0=[:, ;] and
D&=(;, 1]. In D+ , !# +1 holds, and !#&1 in D&. (a) One example of ! and !x=&f
where f belongs to �E(u). (b) !0 and !0

x=&f 0 where f 0 is a canonical restriction of �E(u).

in D+. The problem is how we determine ! in D0 . Here we impose the
conditions that ! is continuous in [0, 1] and &1�!(x)�+1 in D0 .

Note that we have a large degree of freedom to determine the values
of !(x) in D0 since the imposed conditions are only the continuity and
&1�!(x)�+1. It is shown mathematically that f =&!x belongs to �E(u)
if and only if ! satisfies the above two conditions.(2) A typical example is
shown in Fig. 3.1(a).

Here let us recall the Selection Theorem which states that the canoni-
cal restriction of the subdifferential actually determines the evolution of the
solution. Then the question is what is the canonical restriction of �E(u).
If f 0=&!0

x is a canonical restriction of �E(u), !0 minimizes

|
1

0
f (x)2 dx=|

;

:
|!x(x)| 2 dx (3.4)

under the constraints

&1�!(x)�+1 for :�x�;

!(:)=+1 and !(;)=&1
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by the definition of the canonical restriction. The minimizer is an affine
function on [:, ;] which is given by

+1 for 0�x�:

!0(x)={&
2

;&:
(x&:)+1 for :�x�; (3.5)

&1 for ;�x�1

Therefore the canonical restriction f 0 is given by

0 for 0�x<:

f 0(x)={ 2
;&:

for :�x�; (3.6)

0 for ;<x�1

The profiles of !0 and f 0 are shown in Fig. 3.1(b).
Because ut=&f 0=!0

x holds, we naturally regard ux �|ux | as !0. By this
interpretation for ux �|ux |, the formal expression ut=(ux �|ux | )x make sense
in the whole region and the ambiguity is now gone.

We have learned how the solution evolves by the extended gradient
system. The value of u never changes in both of D+ and D& since f 0

vanishes there. Therefore the evolution of the solution is attained only by
the change of values in D0 and the change of D0 itself. Let us consider the
initial data u0(x) with one flat plateau as shown in Fig. 3.2(a), which is
expressed by

A(x) for 0�x�:0

u0(x)={h0 for :0�x�;0 (3.7)

B(x) for ;0�x�1

where A(x) is monotonically increasing and B(x) is monotonically decreas-
ing. We can expect the solution with the form

A(x) for 0�x�:(t)

u(x, t)={h(t) for :(t)�x�;(t) (3.8)

B(x) for ;(t)�x�1

as indicated in Fig. 3.2(b). Since A(:(t))=h(t) and B(;(t))=h(t) holds
and A(x) and B(x) are invertible, we can write :(t)=A&1(h(t)) and
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Fig. 3.2. (a) Initial data with one plateau. (b) Evolution of u.

;(t)=B&1(h(t)). From (3.6), we can see that h(t) is a solution of the
following ordinary differential equation

dh
dt

=&
2

B&1(h)&A&1(h)
(3.9)

with the initial condition h(0)=h0 . Once h(t) is known, :(t) and ;(t) are
obtained by substituting h(t) to :(t)=A&1(h(t)) and ;(t)=B&1(h(t)),
respectively.

Example 7. Let us solve the above problem with the initial data

x for 0�x� 1
3

u0(x)={ 1
3 for 1

3�x� 2
3 (3.10)

1&x for 2
3�x�1

The equation of h(t) is

dh
dt

=&
2

1&2h
(3.11)

and the initial condition is h(0)= 1
3. It is easily solved and the solution is

h(t)={
1
2 (1&-

1
9+8t)

0
for 0�t� 1

9

for t� 1
9

(3.12)

Thus :(t)= 1
2 (1&-

1
9+8t) and ;(t)= 1

2 (1+-
1
9+8t) until t= 1

9 , and after
that time :(t)#0 and ;(t)#1. Graphs of :(t) and ;(t) are shown in
Fig. 3.3(a).
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Fig. 3.3. In the lower figures, the solution is displayed every 0.01 time interval. (a) Example 7.
(b) Example 8.

Example 8. We can also calculate the solution starting with the
initial data

u0(x)=x(1&x) (3.13)

In this case, the initial data for h(t), :(t), and ;(t) are considered to be
h(0)= 1

4 and :(0)=;(0)= 1
2 . By following the process of the previous

example, we have h(t)= 1
4&( 3

2 t)2�3, :(t)= 1
2&( 3

2 t)1�3 and ;(t)= 1
2+( 3

2 t)1�3.
The solution is shown in Fig. 3.3(b).

In both of Examples 7 and 8, D0 was surrounded by D+ on the left
side and D& on the right, and u was decreasing in D0 and D0 was growing.

Fig. 3.4. Upper figures show four patterns to sandwich the region D0 . Lower ones are
profiles of !0 which corresponds to the canonical restriction f 0 by the relation f 0=&!0

x .
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Fig. 3.5. Initial data and the corresponding sequence of regions.

Generally there are four patterns to put D0 between the two regions as
shown in Fig. 3.4. Figure (a) corresponds to Examples 7 and 8. It is
obvious that u increases in D0 and D0 grows in the case of (b) by the fact
that the slope of !0 is positive in D0 . In both of the cases (c) and (d), u
does not change at all in the whole region since !0 is constant, and thus D0

also does not change.
For general initial data, our equation is reduced to a set of ordinary

differential equations whose degree of freedom might decrease in time. In fact,
we can define the sequence of regions like . . .D\ D0D\D0 D\D0D\. . ., in
which D0 appears alternately. One example is given in the Fig. 3.5. Note
that D0 consists of a single point if there's an isolated local minimum or
local maximum as was seen in Example 8. However such D0 's soon start
to grow. Indicating the i-th D0 at the time t by [:i (t), ;i (t)] and the value
of u there by hi (t), we obtain the following ODE system,

dhi

dt
=

2_i

A&1
i+1�2(h)&A&1

i&1�2(h)
(3.14)

where _i=&1 if the situation of [:i (t), ;i (t)] is like Fig. 3.4(a), _i=+1 if
like (b) and _i=0 if like (c) or (d), respectively. Also the functions with
half-integer subscript are defined by Ai+1�2(x)=u0(x) for x # [;i (t),
:i+1(t)]. The region D+ (or D&) can disappear along of the evolution of
the solution and then the D0 's on its both sides will join, consequently the
corresponding degree of freedom in the ODE system decrease. We will
demonstrate such a process in our numerical simulations.

3.2. Numerical Simulations

Numerical simulation of (3.3) is not so trivial since it essentially
includes the nonlocal interaction, or in other words, singular diffusivities.
But the general theory again provides us with a nice theorem for numerics.
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Approximation Theorem. If E� (u) is an approximation of the
energy E(u), then the solution of ut # &�E� (u) approximates the solution of
ut # &�E(u) with the same initial data.

Our plan for designing a numerical scheme is at first taking the dif-
ferentiable energy E#(u) approximating E(u) and derive the gradient system
ut=&($E#�$u), and then construct a numerical scheme for this evolution
equation. Let us take the energy form with large positive parameter # by

E#(u)=|
1

0

1
#

ln cosh #ux dx (3.15)

It is easily seen that it approximates the energy E(u) as shown in
Fig. 3.6(a). The corresponding evolution equation is

ut=(tanh #ux)x (3.16)

or equivalently

ut=(/#(ux) ux)x (3.17)

where

/#( p)=
tanh #p

p
(3.18)

Note that this function /#( p) is an approximation of 1�| p| for large positive
# as shown in Fig. 3.6(b).

Fig. 3.6. (a) Approximation of | p| (solid curve) by (ln cosh #p)�# (dotted curve) as # � �.
(b) Approximation of 1�| p| (solid curve) by /#( p) (dotted curve) whose maximum value is #.
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The form (3.17) was adopted for the numerics since it is a kind of dif-
fusion equation with variable diffusion constant. In order to design a
numerical scheme, we definitely have to use an implicit method because the
diffusion constant is very large (&#) in the region where ux is close to zero.
Our numerical scheme is given by

un
i &un&1

i

$t
=

1
$x _/# \un&1

i+1 &un&1
i

$x + un
i+1&un

i

$x

&/# \un&1
i &un&1

i&1

$x + un
i &un

i&1

$x & (3.19)

where $x is a mesh size in space and $t is one in time; i is an index in space
and n is one in time.

We will demonstrate several simulations by solving the numerical
scheme (3.19). First let us examine Examples 7 and 8 whose exact solution
is already obtained.

Examples 7 and 8. The results are shown in Fig. 3.7. Solid curves
are the numerical solutions while doted curves are the exact solutions.
In the upper figures, the solid curves indicate the boundary between D0

and D\ . The profile of the numerical u is just a little bit softened at the

Fig. 3.7. (a) Numerical and exact solution of Example 7. (b) Numerical and exact solution
of Example 8. #=1000 in both simulations.
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boundary according to the fact that the energy is softened at ux=0. There-
fore it does not matter whether the numerical functions :(t) and ;(t)
approximate the exact :(t) and ;(t) since the numerical :(t) and ;(t)
depend on how they are calculated from the numerical u. However whether
the numerical solution itself approximates the exact solution is important.
In the lower figures, the exact solutions are also displayed as dotted curves,
but they almost coincide with the numerical solutions within the resolution
of graphics.

Example 9. Figure 3.8 shows the evolution of the solution starting
from the initial data

u0(x)=sin ?x&0.8 sin 4?x (3.20)

In this example D0 's fuse and the whole process is divided into several
stages. Snapshots are given in each stage. Standing at some point and
observing the state there, we have several modes��increasing, decreasing,
freezing, unchanged and locked mode. All the modes except the unchanged
mode indicate the state of D0 , i.e., increasing, decreasing and freezing
modes correspond to the state shown in Fig. 3.4(b), (a) and (c)+(d),
respectively. Locked mode indicates that the value is locked in D0 by the
Dirichlet boundary condition, and unchanged mode is the state in the
region D\ . Which mode is selected at the point at the moment depends
on the global profile of the solution. For example, the observed history

Fig. 3.8. (a) Boundary between D0 and D\ are drawn. The characters ``I,'' ``D,'' ``F,'' ``L''
and ``U'' indicates increasing, decreasing, freezing, locked and unchanged modes, respectively.
(b) Snapshots of the solution.
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of the state at the point x=0.7 (vertical dashed line in Fig. 3.8(a)) is
``unchanged,'' ``increasing,'' ``freezing,'' ``decreasing'' and finally ``locked.''

So far, we limited our argument to one dimensional space. We can
easily extend our method to the multi-dimensional space by replacing the
energy form by

E(u)=|
0

|{u| dV (3.21)

The derived evolution equation is

ut={ } \ {u
|{u|+ (3.22)

It is straightforward to construct a numerical scheme similar to the one
dimensional one by approximating 1�|{u| by /#( |{u| ). We demonstrate two
simulations in the two dimensional space.

Example 10. First we take the initial data with the simplest profile
given by

u0(x, y)=a sin ?x sin ?y (3.23)

on the unit square [0, 1]_[0, 1]. Snapshots are shown in Fig. 3.9. As in
the one dimensional computation, the peak is flattened.

Fig. 3.9. The left panel shows a section of the graph in the right panel along y=0.5.
Parameters are given as a=1.5 and #=100.
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Fig. 3.10. The left panel shows a section of the graph in the right panel along y=0.5.
Parameters are given as a=1.5, m=3, x1=0.35, y1=0.5, x2=0.65, y2=0.5 and #=100.

Example 11. Let us consider also the mountain-like initial data
with two peaks given by

u0(x, y)=ae&m2(r2
1+r2

2) (3.24)

where r2
1=(x&x1)2+( y& y1)2 and r2

2=(x&x2)2+( y& y2)2. Figure 3.10
shows also snapshots of the solution. As is expected, the two peaks are
flattened. At the same time, the plateau growing from the saddle point is
observed.

4. SPATIALLY INHOMOGENEOUS EQUATIONS

In the phase field type models for grain boundary problem, there is a
mathematical difficulty to keep the angle variable constant or almost
constant in each grain. One way to solve the problem is to dig holes in the
energy space according to the finite number of the special grain orienta-
tions.(12�16) This obviously breaks the rotational invariance of the model,
which is not physically desirable. On the other hand, if no local minimums
are assumed in the energy space and if the leading term of the energy with
respect to {% is |{%| p with p=2 (conventional way), the angle variable is
hardly kept constant in each grain, especially without the help of boundary
conditions.(10, 11, 17) The following new model equations were derived from
the energy including |{%| p with p=1;(9)
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{''t=&2 {2'+1&'&2s' |{%|
(4.1)

{%%t=
s
'2 { } \'2 {%

|{%|+
where ' is an order parameter of orientation and % indicates an angle.
It is clear that this model retains a symmetry under rotation since it
includes % only in {% form. The basic idea of this model is to keep the
angle variable constant by means of singular diffusivity in each grain. Then
the jump of the angle variable inevitably appears at the grain boundary,
consequently we have singular |{%|. By this singularity, the graph of ' is
picked downward at the grain boundary, while ' prefers the value 1
(ordered state) in bulk. We demonstrate one typical profile of ' and % for
the one dimensional problem in Fig. 4.1. The 1st equation in (4.1) is a
standard reaction diffusion equation except for the |{%| term which is not
so difficult to handle. However, the 2nd equation is new and has to be
checked mathematically. To begin with we consider that ' is a given func-
tion depending only on the spatial variable x and examine how the lower
equation of (4.1) works in the one dimensional model. The equation which
will be studied in this section comes from such a context as stated above.

4.1. Theoretical Approach

In this section, we study the spatially inhomogeneous equation

ut=
1
a \a

ux

|ux |+x
(4.2)

Fig. 4.1. One example of the profiles of ' and % which express multi-grains. The angle
variable % has a discontinuity at several points (grain boundary), and ' is nondifferentiable
there. Although the local minimums of ' look like vanishing, they are small but positive
values.
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which is derived from the energy form

E=|
1

0
a(x) |ux | dx (4.3)

The function a(x) corresponds to '2 in the grain boundary model shown
above, which is the reason for the term 1�a in the right-hand side of (4.2).
At this point, we only assume that a(x) is continuous and positive.

Let us start our discussion from the energetic point of view. At first,
we recall the homogeneous equation and consider its boundary conditions.
If the Dirichlet boundary conditions u(0)=u(1)=0 are imposed on the
homogeneous equation, the final state should be u#0 as was shown in the
previous section. If the Neumann boundary conditions ux(0)=ux(1)=0
are given, u#constant will be the final state. In both cases, they are
obviously global minimizers of the homogeneous energy E=�1

0 |ux | dx.
Then, if we assume the non-uniform Dirichlet boundary conditions, for
example, u(0)=0 and u(1)=1, what is a global minimizer? Since |ux |�ux

holds,

E=|
1

0
|ux | dx�|

1

0
ux dx=u(1)&u(0)=1 (4.4)

It is obvious that the equality holds if u is non-deceasing (ux�0); thus
every non-decreasing function is a global minimizer. Even a non-decreasing
discontinuous function can be regarded as a global minimizer by considering
that ux includes singularities written by Dirac's delta function. In any case,
the global minimizer can't be determined uniquely in the homogeneous
equation with non-uniform Dirichlet boundary conditions.

Next, let us consider the inhomogeneous energy (4.3) with the same
non-uniform Dirichlet boundary conditions as above. If a(x) is a single-
well function whose minimum is attained at x0 as indicated in Fig. 4.2(a),
then what is a possible global minimizer of the energy E? From the relation
a(x) |ux |�a(x0) ux , we have

E=|
1

0
a(x) |ux | dx�a(x0) |

1

0
ux dx=a(x0)(u(1)&u(0))=a(x0) (4.5)

The energy value a(x0) is actually attained when all the variation of ux is
completely concentrated at the point x0 . Therefore the global minimizer is
a step function having a discontinuity only at x0 as shown in Fig. 4.2(b),
and the global minimizer is unique. Of course, the single-well profile of a(x)
is not necessary for the uniqueness of the global minimizer. It is sufficient
that a(x) attain its minimum at a unique point x0 .
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Fig. 4.2. (a) Single-well a(x). (b) Corresponding global minimizer u� (x).

The example above tells us that the solution quite naturally has a dis-
continuity since it makes the energy low by concentrating its variation at
the point where a(x) is small. Now we restrict our interest to the special
form of a(x) and the solutions in connection with the one dimensional
grain boundary model. From the argument in the beginning of this section
and Fig. 4.1, we extract several properties of '2 (the profile of '2 is quite
similar to the one of ') and impose them on a(x) as follows;

Conditions on a(x)

1. a(x) is continuous and positive on [0, 1],
2. a(x) has local minimums at xi (i=1, 2,..., I&1), where 0=x0<

x1< } } } <xI&1<xI=1.
3. a(x) is concave on each interval [xi&1 , xi].

According to these conditions, we consider piecewise constant solution u
whose typical profile is shown in Fig. 4.3(a). Such solutions are expressed
by

u=hi (t) on each interval [xi&1 , xi] (4.6)

where each hi (t) is constant for the fixed t and the values of the adjacent
intervals are different. Note that it is unknown at this point whether the
solution keeps such a piecewise constant profile through the evolution

Fig. 4.3. (a) Piecewise constant solution. (b) Values of u in the neighbor of the interval
[xi&1 , xi].
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Fig. 4.4. (a) The discontinuous point xi can be interpreted as a shrunk D+ , thus !(xi)=+1.
(b) Shrunk D& , thus !(xi)=&1.

process or not. Therefore we have to discuss how such solution is really
evolved by the equation (4.2) which is regarded as an extended gradient
system.

From here, we start to discuss the subdifferential of such a piecewise
constant u and its canonical restriction. Thus, we fix the variable t and
forget the dependence on t for a while. Let us set !=ux�|ux | for the
piecewise constant u as we did in the previous section. In contrast to the
previous case, there is no point where the value of ! can be determined at
a glance, because either ux=0 or ``u is discontinuous'' happens in the whole
region. However, it is plausible to set !(xi)=+1 when hi<hi+1 , because
u can be interpreted as a limit of the piecewise linear function which is con-
tinuous and increasing in the vicinity of xi as shown in Fig. 4.4. Similarly
we can set !(xi)=&1 if hi>hi+1. In addition, we impose the conditions
that ! is continuous and satisfies &1�!�+1 on [0, 1]. Then, it is
proved(2) that the function f which is defined by f =&(1�a)(a!)x belongs
to the subdifferential �E(u).4 What we really need is, of course, the canoni-
cal restriction f 0 of �E(u) in order to know how the solution evolves. It is
also proved(2) that the canonical restriction f 0 is selected from such a set
of f's as described above by the following property;

Selection Condition. f 0 is constant on each interval [xi&1 , xi].

By this characterization of f 0, we can calculate f 0 and the corresponding
!0. In fact, by setting

f 0=&Ci on [xi&1, xi] (4.7)

where Ci is a constant, we have

(a!0)x=Ci a on [xi&1 , xi] (4.8)

1211Equations with Singular Diffusivity
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Integrating (4.8) from xi&1 to xi , the constant Ci is determined as follows;

Ci=
a(x i) !0(x i)&a(x i&1) !0(x i&1)

�xi
xi&1

a(x) dx
(4.9)

Note that (4.9) holds for i=2, 3,..., I&1, and C0=CI=0 must hold since
the values are locked by the Dirichlet conditions in the intervals [x0 , x1]
and [xI&1 , xI]. Again by integrating (4.8) from xi&1 to x, we obtain

!0(x)=
1

a(x) _a(x i&1) !0(!i&1)+Ci |
x

xi&1

a(x~ ) dx~ & (4.10)

on the interval [xi&1 , xi].
Now we have the local evolution rule, and let us come back to the

time dependent problem. Since the change rate of u is constant on each
interval, the piecewise constant profile of u is kept in the evolution process.
Thus the solution permits an expression (4.6), if the initial data has a
piecewise constant profile whose discontinuous points coincide to the local
minimum points of a(x). The evolution rule is written as follows;

dhi

dt
=

a(xi) sgn(hi+1&hi)&a(x i&1) sgn(h i&hi&1)
�xi

xi&1
a(x) dx

(4.11)

for i=2, 3,..., I&1. For the intervals of both ends,

h1(t)#u� left and hI (t)#u� right (4.12)

where u� left and u� right are constants given by the Dirichlet boundary condi-
tions. If the Neumann boundary conditions ux(0, t)=ux(1, t)=0 are
imposed,

dh1

dt
=

a(x1) sgn(h2&h1)
�x1

x0
a(x) dx

and
dhI

dt
=&

a(xI&1) sgn(hI&hI&1)
�xI

xI&1
a(x) dx

(4.13)

hold. Note that the change rate of hi (t) is constant in t, thus hi (t) varies
linearly in t as long as the relations between hi (t) and hi+1(t) and between
hi (t) and hi&1(t) are kept. We should not forget that this evolution rule
holds until the first moment when the values of the solution on some adja-
cent intervals coincide. After the coincidence, what will happen? This
problem is not so easy to answer and we will study it in the following
example and in the next subsection.

Example 12. Let us take x0=0, x1= 1
4 , x2= 3

4 and x3=1, and
define the piecewise linear function a(x) by connecting the five points
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Fig. 4.5. (a) Piecewise linear a(x). (b) Corresponding global minimizer u� (x).

(x0 , 1), (x1 , 1�2+m), (1�2, 1), (x2 , 1�2&m) and (x3 , 1) in this order as
indicated in Fig. 4.5(a). The constant m is assumed to satisfy 0<m< 1

2 ,
thus a(x) satisfies all the conditions required. Also a(x) attains its global
minimum at x=x2 . We take the piecewise constant initial data u0 and
analyze how it evolves. In this example, we impose the Dirichlet conditions
u(0, t)=0 and u(1, t)=1, thus the values on [x0 , x1] and [x2 , x3] are
locked. By taking the initial data compatible with the boundary conditions,
we have h1(t)#0 and h3(t)#1. Therefore the solution u is expressed only
by h2(t). As shown in Fig. 4.6, the initial data u0 is classified into the three
patterns; h2(0)<0, 0<h2(0)<1 and h2(t)>1. By the evolution rule (4.11),
we have

dh2

dt
=

8
3 _\

1
2

&m+ sgn(1&h2(t))&\1
2

+m+ sgn(h2(t))& (4.14)

If h2(0)<0, dh2 �dt= 8
3 holds until the time when h2(t) reaches to 0, then u

becomes a global minimizer and stops. If 0<h2(0)<1, dh2 �dt=&16
3 m

holds until the time when h(t) reaches to 0, then u becomes a global mini-
mizer and does not change anymore. If h2(0)>1, dh2 �dt=&8

3 holds until

Fig. 4.6. Three patterns of the initial data and the direction of elevator move of the central
part. (a) h2(0)<0, (b) 0<h2(0)<1, (c) h2(0)>1.
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Fig. 4.7. Global flow in t&h2 plane. (a) m>0, (b) m<0, (c) m=0.

the time when h(t) reaches to 1. Now we encounter the problem whether
h2(t) will stop at the value 1 or continue to decrease. In this case, it is not
so difficult to judge which will happen, since it is more advantageous
energetically to continue decreasing. Therefore the solution eventually
satisfies 0<h2(t)<1 and follows the new rate dh2 �dt=&16

3 m, and finally
reaches the state 0. In any case, the solution arrives at the global minimizer
h2=0 in finite time. The global flow in t&h2 plane is indicated in
Fig. 4.7(a). Figure 4.7(b) shows the flow for m<0, in which the global min-
imizer is h2=1. For m=0, arbitrary h2 which satisfies 0�h2�1 is a global
minimizer. In the next subsection, more complicated examples will be
examined by numerical simulations.

Grain Boundary Model. Before going to the next subsection, we
apply our results to the grain boundary model (4.1).(9) In this model, the
ordering variable ' is approximately expressed by '&1&(1&'(x0))
e&|x&x0|�& where x0 indicates a grain boundary point, as long as the grain
boundary point is well isolated from another ones. Under the assumption
s>>& and the angles in the grains on the both sides are not so close, the
value '(x0) is also approximated by '(x0)&&�(s 2%) where 2% is an
absolute value of the jump of % at the grain boundary point. Here, let us
consider a situation similar to Example 12 as shown in Fig. 4.8, in which
the two grain boundary points x& and x+ are located in well-separated
positions with the distance l (l>>&). The angle variables in the grains on
the both sides are locked by the boundary conditions, say %& on the left
grain and %+ on the right, and we indicate the value of the angle variable
in the central grain by %0(t). Since the movement of the positions of the
grain boundary makes almost no difference to the energy as long as the
two grain boundaries are apart, the evolution of the solution is attained by
the elevator motion of the angle variable %0(t) with fixed positions of the
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grain boundary points. Thus our concern is how %0(t) evolves. Using (4.11)
and scaling the time variable appropriately, we obtain

{%
d%0

dt
=s

'(x+)2 sgn(%+&%0)&'(x&)2 sgn(%0&%&)
�x+

x&
'(x)2 dx

(4.15)

Considering the form of ' and the relation l>>&, we have �x+
x&

'(x)2 dx& l.
Let us assume %&<%+ and examine for the three cases; %0(t)<%& , %&<
%0(t)<%+ and %0(t)>%+. In the first case,

{%
d%0

dt
&

&
l

&
s \

1
(%+&%0)2+

1
(%&&%0)2+ (4.16)

Similarly in the third case,

{%
d%0

dt
& &

&
l

&
s \

1
(%0&%0)2+

1
(%0&%&)2+ (4.17)

In the second case,

{%
d%0

dt
&

&
l

&
s \

1
(%+&%0)2&

1
(%0&%&)2+

=
&
l

&
s

2(%+&%&)
(%0&%&)2 (%+&%0)2 \%0&

%++%&

2 + (4.18)

These formulas mean that %0(t) approaches the one of the angles %& and
%+ which is closer to %0(t). In this model, once the angles of adjacent
grains coincide, the corresponding local minimum of ' disappears, which is
a difference from the equation with fixed a(x).

Fig. 4.8. Sandwiched grain.
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Fig. 4.9. (a) Profile of a(x) for m=0.25. (b) Numerical solution which started from
h2(0)=1.3.

4.2. Numerical Simulations

A numerical scheme for (4.2) is constructed by following the same idea
with the one introduced in the previous section. We first approximate the
energy (4.3) by

E#(u)=|
1

0
a(x)

1
#

ln cosh #ux dx (4.19)

with a large positive parameter #, and derive the gradient system of (4.19)
as follows;

ut=
1
a

(a/#(ux) ux)x (4.20)

where /# is defined by (3.18). Then our numerical scheme is expressed by

un
i &un&1

i

$t
=

1
ai

1
$x _ai+1�2/# \un&1

i+1 &un&1
i

$x + un
i+1&un

i

$x

&ai&1�2 /# \un&1
i &un&1

i&1

$x + un
i &un

i&1

$x & (4.21)

where ai\1�2 are evaluated at half mesh points.

Fig. 4.10. Numerical solution is drawn by plotting u(1�2, t) using solid curve, while exact
ones by dotted line which are hardly seen. (a) m=0.25 and h2(0)=&0.3, 0.6, 1.3, (b)
m=&0.25 and h2(0)=&0.3, 0.4, 1.3, (c) m=0.0 and h2(0)=&0.3, 0.4, 0.6, 1.3.
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Fig. 4.11. (a) Profile of a(x) for a1=0.7, a2=0.85 and a3=0.3. (b) Initial data and the
evolution in the first stage, where h2(0)=0.7 and h3(0)=0.3. Small numbers are indicators of
the interval which equals the subscript i of hi (t).

Example 12. Since the exact solution is known for the Example 12,
it can be used as a test problem for our numerical scheme (4.21). One
simulated solution is shown in Fig. 4.9(b). The discontinuity of the exact
solution is well simulated within the mesh size, and the flatness on each
interval is also complete. We also show the t&h2 plots for several initial
data together with the exact solution for positive, negative and vanishing
m in Fig. 4.10. Numerical solutions almost coincide with the exact ones
within the resolution of the graph.

Example 13. In this example, we consider a little more com-
plicated case. The function a(x) is given by connecting (0, 1), (1�6, a1),
(2�6, 1), (3�6, a2), (4�6, 1), (5�6, a3) and (1, 1) in this order as shown in
Fig. 4.11(a). Here a1 and a3 are assumed to satisfy the relation 0<a3<
a1<1, and we Control the parameter a2 between 0 and 1. The points deter-
mining the division to the intervals are given as follows; x0=0, x1= 1

6 ,
x2= 3

6 , x3= 5
6 and x4=1. We take the initial data which satisfies 0<

h3(0)<h2(0)<1 as shown in Fig. 4.11(b). It is a direct result of (4.11) that

Fig. 4.12. Upper panels are graphs of a(x), and lower ones show u(1�3, t) plotted by solid
curve and u(2�3, t) by dotted curve. Small numbers correspond to the ones in Fig. 4.11. The
notation using +, for example ``2+3,'' means that the values on the adjacent intervals keep
their equality after their coincidence. (a) a2=0.15, (b) a2=0.40, (c) a2=0.60, (d) a2=0.85.
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Fig. 4.13. (a) Solid line indicates a profile of a(x). Short dashed lines connecting the local
minimums of a(x) are corresponding to the fusion of the two orbits in Fig. 4.13, and dashed
line connecting (x3 , a3) and (x8 , a8) corresponds to the crossing of the two orbits (``4+5'' and
``6+7+8''). (b) Initial data u0(x). Small numbers are indicators of the intervals which equal
to the subscript i of hi .

h2(t) decreases and h3(t) increases until they coincide whatever a2 is. Then
the problem is what will happen next. Figure 4.12 shows the evolution of
h2(t) and h3(t) for the several values of a2 . Our observation from these
results is that h2(t) and h3(t) go together after their coincidence if (x2 , a2)
is located above the line which connects (x1 , a1) and (x3 , a3) (indicated by
short dashed line in upper panels of Fig. 4.12). It is also observed that h2(t)
and h3(t) go apart after the coincidence if (x2 , a2) is located below the
short dashed line. We will examine this hypothesis in the next example.

Example 14. We increase the number of intervals and set the func-
tion a(x) and the initial data u0(x) by using random numbers as shown in
Fig. 4.13. Local minimum points of a(x) are (x1 , a1), (x2 , a2),..., (x8 , a8) in
this order from the left end. The result of the simulation is demonstrated
in Fig. 4.14. Merging of the two orbits happen sequentially. At first, the
orbits ``7'' and ``8'' make a pair, and next ``4'' and ``5,'' then ``6'' and ``7+8''
follows. Note that our hypothesis holds in these merging, for example
(x7 , a7) is located above the line connecting (x6 , a6) and (x8 , a8) as

Fig. 4.14. Numerical solution is indicated by plotting the values at the center of the inter-
vals. Small numbers correspond to the ones in Fig. 4.13. Three panels are drawn by the same
simulation where (a) shows the early stage (t=0t0.06), (b) does the intermediate one
(t=0t0.3) and (c) does the last (t=0t1.2). The crossing between ``4+5'' and ``6+7+8''
is indicated by the small circle in the panel (a). Note that the crossing between orbits of non-
adjacent pairs has no meaning.
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indicated Fig. 4.13(a), and so on. Similarly, ``2'' and ``3'' go together after
their coincidence. Just after that, the values of ``4+5'' and ``6+7+8'' coin-
cide. They do not make a pair and go apart, since (x5 , a5) lies below the
line connecting (x3 , a3) and (x8 , a8). Then one more merging between
``2+3'' and ``4+5'' occurs, and finally ``2+3+4+5'' and ``6+7+8'' are
locked to ``1'' and ``9'' respectively, and the solution reaches to the global
minimum. We made several simulations by changing the random number
sequence, and we observed that the equation in this example has the
following properties.

1. For arbitrary initial data, the solution reaches the global mini-
mizer in a finite time.

2. When two orbits come across (each of them may be composed of
several orbits already), whether they merge or not is determined as follows.
Let xl and xr be x-coordinate of the left and right ends of the region con-
sists of all the related intervals, and xb a boundary point between the two
regions corresponding to the two orbits. The two orbits merge if and only
if the point (xb , a(xb)) is located above the line connecting (xl , a(xl)) and
(xr , a(xr)).

For more general a(x), it turns out that the condition which guaran-
tees the merging of orbits is more complicated than the above observation.
We shall study the precise condition in ref. 2.

APPENDIX. BRIEF MATHEMATICAL BACKGROUND
FOR THE SECTIONS 2 AND 3

We present a mathematical background of the contents of the Sec-
tion 2 and 3 for those who are interested in it. The theory of nonlinear
semigroup theory was initiated by Y. Komura(3) and developed by many
mathematicians for many years; see the book of V. Barbu(6) for details
which provides a mathematical formulation of various important problems
including Stefan problem and Hele-Shaw problem; see also the book of
A. Visintin(8) for these applications. The theory provides a unique global-
in-time solution of the initial value problem for the extended gradient
system. However, since the calculation of the subdifferential is not easy, the
explicit shape of the solution has not been very well studied. Several years
ago J. Taylor(4) and independently S. Angenent and M. Gurtin(7) for-
mulated the motion of faceted phase boundaries by a singular interfacial
energy called crystalline energy. In some special geometries their explicit
solutions turn out to coincide with the solution of nonlinear semigroup
theory if the equation is an extended gradient system. However, in general
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the equation is not an extended gradient system, so another approach is
necessary. based on the order preserving structure of the problem, a new
approach was established by M.-H. Giga and Y. Giga(1) for the spatially
homogeneous problem for evolving graphs. For the background of growth
of faceted curves and for the theoretical development as well as the example
(3.8), see ref. 1. This method provides a stronger approximation theorem
than the nonlinear semigroup approach in L2 spaces. By the way, the
theory developed by ref. 5 is along the lines of the nonlinear semigroup
theory. It concerns the equation ut={ } ({u�|{u| ) and includes examples of
solution (3.8).
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